Space Weather Effects on GPS Systems

17 Sep 2012

Joe Comberiate Michael Kelly Lars Dyrud Gregory Weaver

Outline

Space Weather Effects on GPS

- Solar Radio Bursts
- Relevant Phenomenology
- Delay and Total Electron Content
- Scintillation
 - Equatorial Impacts
 - DMSP/SSUSI Scintillation Maps
- IDA4D Data Assimilation
- Polar Cap GPS Scintillation

Why Care About Space Weather?

Each of the next 5 years is expected to have higher solar activity than any year since 2003. So if you are used to space weather being a non-factor in your operations, that is about to change.

March 7, 2012 – The sun unleashed an X5.4-class solar flare, the largest in 6 years. A warning shot at the beginning of the new solar maximum?

Space Weather Effects

X-Rays, EUV, Radio Bursts

- SATCOM Interference
- Radar Interference
- HF Radio Blackout
- Geolocation Errors
- Satellite Orbit Decay

Scintillation

- Degraded SATCOM
- Dual-Frequency GPS Error
 - Positioning
 - Navigation
 - Timing

SEP Events

- High Altitude Radiation Hazards
- Spacecraft Damage
- Satellite Disorientation
- Launch Payload Failure
- False Sensor Readings
- Degraded HF Comm (high latitudes)

Geomagnetic Storms

- Spacecraft Charging and Drag
- Geolocation Errors
- Space Track Errors
- Launch Trajectory Errors
- Radar Interference
- Radio Propagation Anomalies
- Power Grid Failures

Effects of Solar Radio Bursts on GPS

- Sun produces radio waves during solar flare eruptions
- Reduces the signal-to-noise ratio of relatively weak GPS signal
- Solar radio waves cover a broad frequency range and interfere with frequencies L1, L2 (among many other) channels used by GPS

Atmospheric Effects on GPS Ranging

 Refraction lengthens the path of the wave compared to a geometric line of sight

Error-Producing Time Delays

$\rho = R + c(t_u - \delta t + \frac{\delta t_D}{\delta t_D})$

- ρ is pseudo-range
- R is actual range
- c is the speed of light
- *t_u* is the receiver clock offset
- δt is the satellite clock offset
- $\delta t_D = \delta t_{atm} + \delta t_{noise+resolution} + \delta t_{mp} + \delta t_{hw}$
- Concentrate on δt_{atm} which is a group delay due to the ionosphere and troposphere
- Signal information delayed (e.g. PRN code and navigation data)
- Carrier phase advanced

Atmospheric Delays

•
$$\delta t_{atm} = \delta t_{trop} + \delta t_{iono}$$

 Physical reason for delays is refraction due to changes in indices of refraction for ionosphere and troposphere

$$DS = c * Ot_{atm} = \int_{SV}^{User} n \, ds - \int_{SV}^{User} dl$$

ΔS is the path length difference due to refraction by the lonosphere or troposphere

 ω_{pe}^2 = plasma frequency Can be equated with total electron content (TEC)

$$DS = c * Ot_{iono} = \int_{SV}^{User} \frac{W_{pe}^2}{W^2} ds$$

$$\mathsf{D}S = c^* \mathcal{O}t_{iono} = \frac{40.3}{f^2} \int_{SV}^{U_{ser}} n_e \, ds$$

$$\mathsf{D}S = c^* \mathcal{O}t_{iono} = \frac{40.3}{f^2} * TEC$$

Ionospheric Total Electron Content Map

- Ionospheric TEC maps (left), 60 TECU \rightarrow 10 m (33 ns delay)
- During geomagnetic storms, TEC values can increase by more that 100% (effectively doubling the error)
- Ionospheric storms occur within first hours of a geomagnetic storm
- TEC "walls" (Dehel, 2004); TEC falls by 130 TECu over 50 km; 30 m GPS delay; walls move 100 to 500 m/s

Ionospheric Scintillation Affects GPS and Other RF Signals

- Scintillations ("twinkling") in GPS signals arise from spatial and temporal variations in the ionosphere.
- These ionospheric variations occur under quiet and disturbed conditions.
- They are difficult to forecast accurately.

Scintillation Near Bubbles

Equatorial Region Space Weather Impacts

Special Sensor Ultraviolet Spectrographic Imager (SSUSI) Daily Summary Image

F18 Composite Image (SZA > 100), 2011 Day 309, Orbits 10551-10565
OI 1304 (blue, 5748 R max (data), 5000 R max (color scale))
OI 1356 (green, 2975 R max (data), 400 R max (color scale))
LBH shart (red, 3192 R max (data), 1000 R max (color scale))

Scintillation

- Degraded SATCOM
- Dual-Frequency GPS Error
 - Positioning
 - Navigation
 - Timing

SSUSI imagery shows locations of irregularities

•2D tomographic inversion is performed for each altitude vs. longitude slice, 12 combined to make 3D profile
•3D grid (12x24x30), 5 deg lat., 0.33 deg lon., 20 km alt. resolution

Mesoscale Ionosphere Model – Assimilate SSUSI, GPS, SCINDA Data

- Model assimilates SSUSI, GPS, and SCINDA data using Kalman Filter
- 20° lat. x 15° lon., available at all longitudes
- Background ionospheric physics and propagation model eliminates data gaps
- Fixed grid, updates every 15 minutes

Scintillation Region Future Scintillation Quiet Region No Data

Ionospheric Data Assimilation Four Dimensional (IDA4D)

- Global 3D time-evolving imaging of the ionosphere electron density Gauss Markov Kalman Filter predicts forward in time
- Solves for log of electron density
 - Guarantees positivity
- Errors are more log normal distribution Completely irregular horizontal grid, vector of vertical grid points
 - Úser selectable
 - High resolution where desired
 - Can be dynamically chosen based on data

Polar Cap GPS Scintillation

- Polar cap GPS scintillation is a typical occurrence often caused by ionization patches immersed in convection flow
- Interferes with increasing human activity at high latitudes
- Present simulated GPS scintillation based on ICI-2 Langmuir probe measurements of F-region density fluctuations
- Finding- Scintillation for this case caused primarily but F-region gradient drift waves.
- NEW RESULT- Scintillation fluctuations mimic TEC fluctuations which leads to position error and scientific uncertainty

ICI-2 Langmuir Probe Data

 ICI-2 sampled F-region density with sufficient resolution (<10 m) for phase screen modeling of GPS scintillation

Summary

- Solar max is approaching ionospheric disturbances will likely increase interference with GPS (signal fading and precision errors)
- Ionosphere affects GPS through time delays associated with TEC gradients and scintillation associated with ionospheric irregularities
- GPS susceptible to scintillation particularly at low latitudes
- Satellite UV (SSUSI) imagery can map irregularities
- APL data assimilation models (IDA4D) can identify scintillation over regions of interest
- New models at APL reveal sources of polar cap GPS scintillation and positioning errors

SEASONS Conference Operating Through Solar Max

November 14–16, 2012 Kossiakoff Center The Johns Hopkins Applied Physics Lab, Laurel MD

- Space Environment Applications, Systems, and Operations for National Security (SEASONS) Conference
- Purpose: To discuss impacts of space environment on DoD and IC systems, and the applications and requirements for sensors and algorithms to mitigate these impacts and enhance operations
- 2012 Theme: Operating through solar max
 - Lessons learned from last solar max
- Confirmed Keynote Speakers:
 - Brig. Gen. Coffin (Deputy Commanding General for Operations, USASMDC/ARSTRAT)
 - Dr. Fred Lewis (Director Air Force Weather)
 - Ms. Aurea Rivera (Senior Intelligence Engineer, NASIC)
- Open to US Citizens with a Secret clearance
- SCI sessions
- For more information:
 - Contact Dr. Erin Taylor at 240-228-9525 or Erin.Taylor@jhuapl.edu
 - Visit the website at https://secwww.jbuapl.edu/SEASONS/

