

Eric Gakstatter

egakstatter@gpsworld.com

GPS World magazine

Presented September 22, 2009

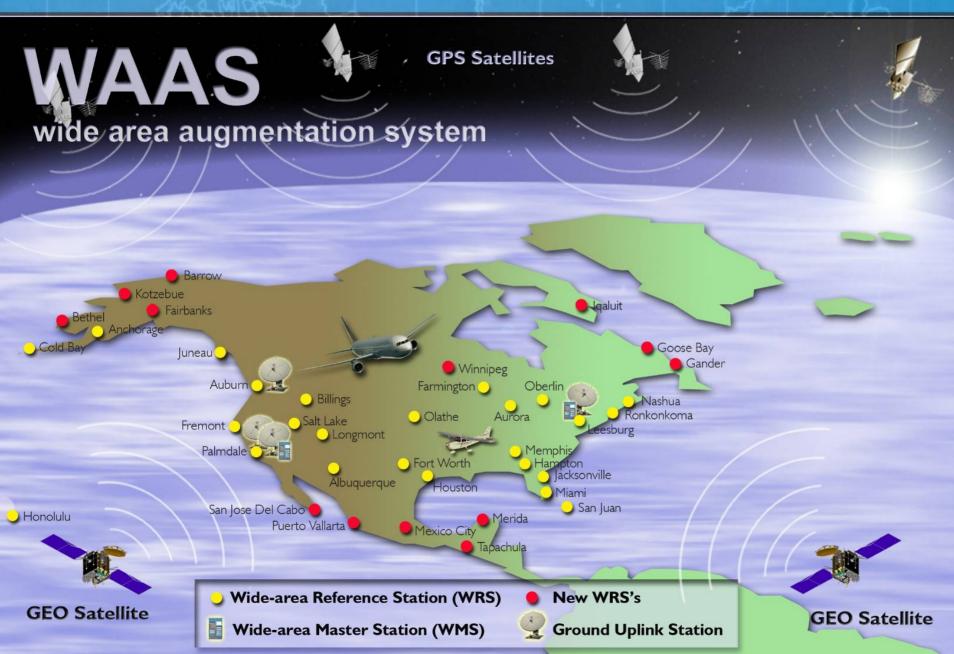
BLEU USSLS/CGSIC Meeting

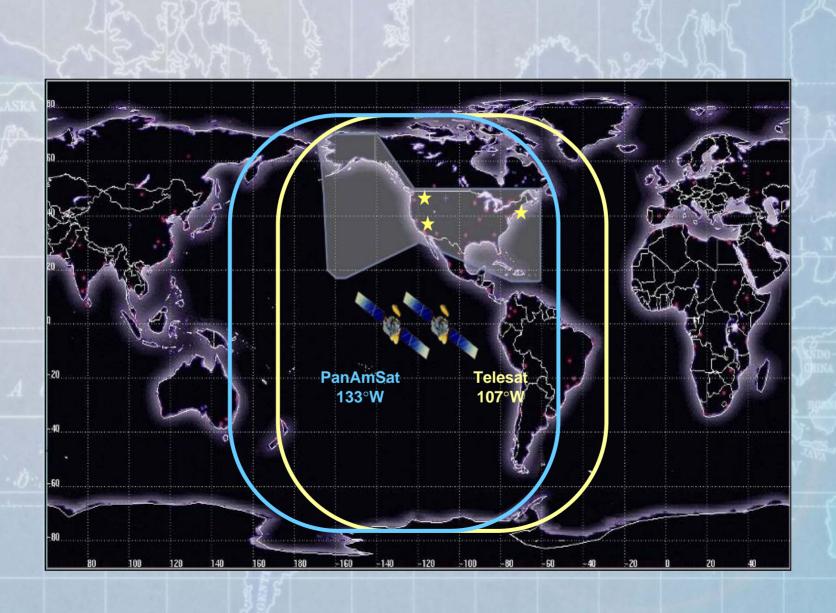
Savannah, GA

Wide Area Augmentation System

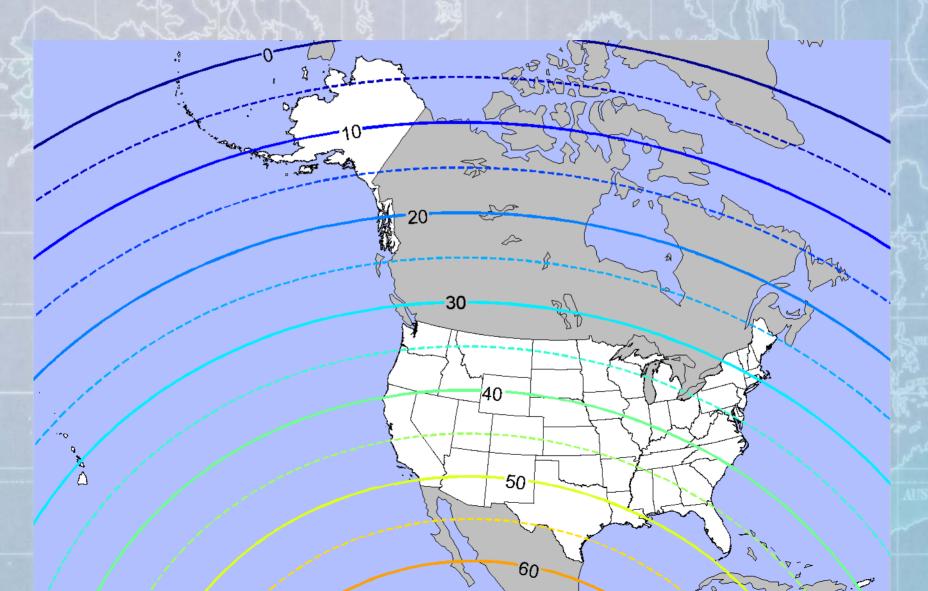
- A Federal Aviation Administration (FAA) program that provides GPS integrity monitoring and improves GPS accuracy.

- ~\$90M-100M annual budget.

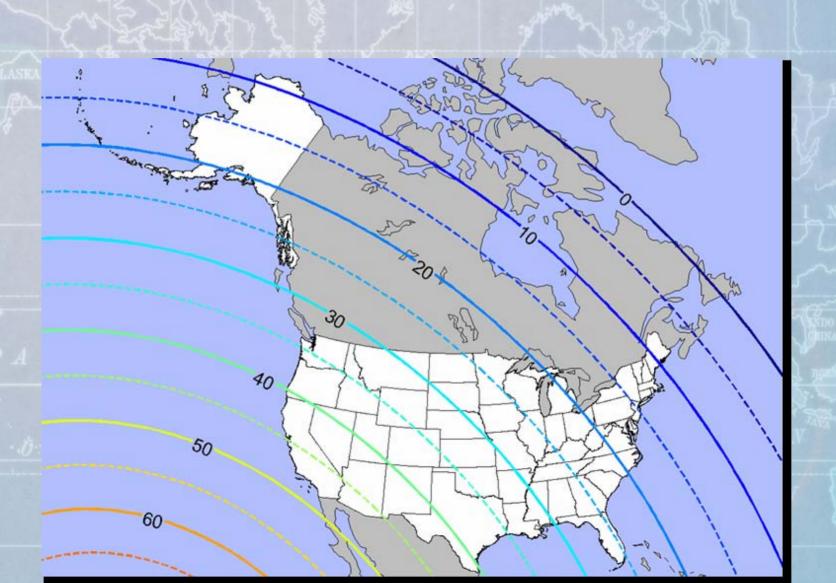

What does WAAS do?

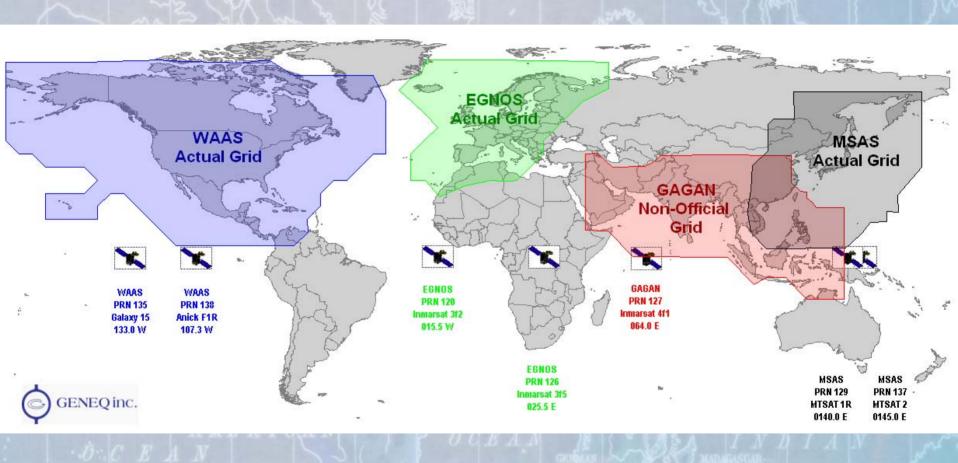

- Provides position integrity. GPS alone isn't reliable enough for aviation navigation.
- The specification when using WAAS is that GPS shouldn't provide an "out of tolerance" position more than 1 in 100,000,000 times.
- Provides user notification within six seconds if a position is "out of tolerance".
- Ionospheric modeling.
- Position corrections.

- WAAS addresses three GPS error sources; ionospheric error, satellite clock error, satellite ephemeris error.
- Error from the ionosphere is the largest and most dynamic.
- WAAS models the effect of the ionosphere that it has on GPS signals passing through it.


WAAS consists of:

- A network of 38 WAAS Reference Stations (WRS) that are dual frequency (L1/L2) GPS receivers.
- Processing facilities.
- Geostationary satellites.
- Control facilities.




Elevation of WAAS PRN 138/SV 51

Elevation of WAAS PRN 135/SV 48

World-wide compatibility

Trends in GPS mapping

It seems that WAAS is all about aviation.

How does the surveying/mapping community benefit from WAAS?

Trends in GPS mapping

- The survey/mapping community expects smaller, simpler, cheaper GPS sub-meter mapping equipment.
- The user community is moving away from post-process differential correction and towards real-time corrections.
- What are the choices for real-time DGPS corrections?...

Real-time Correction Sources

WAAS (SBAS):

-free, accurate, North American coverage (US/Alaska, Hawaii, Canada, Mexico), Western Europe (EGNOS), MSAS (Japan). India and Russia in planning stage.

Radio-beacon DGPS/NDGPS:

-free, accurate, USA coverage (parts of Canada), coastlines of 40+ other countries, extra hardware required.

Commercial DGPS services:

-subscription-based, accurate, world-wide coverage, extra hardware required.

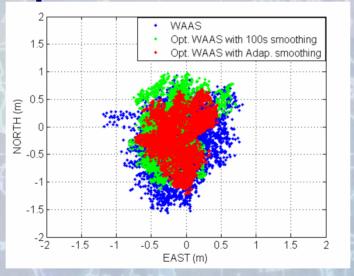
RTK networks:

-some free/some subscription-based, very accurate, very limited coverage, extra hardware required.

WAAS

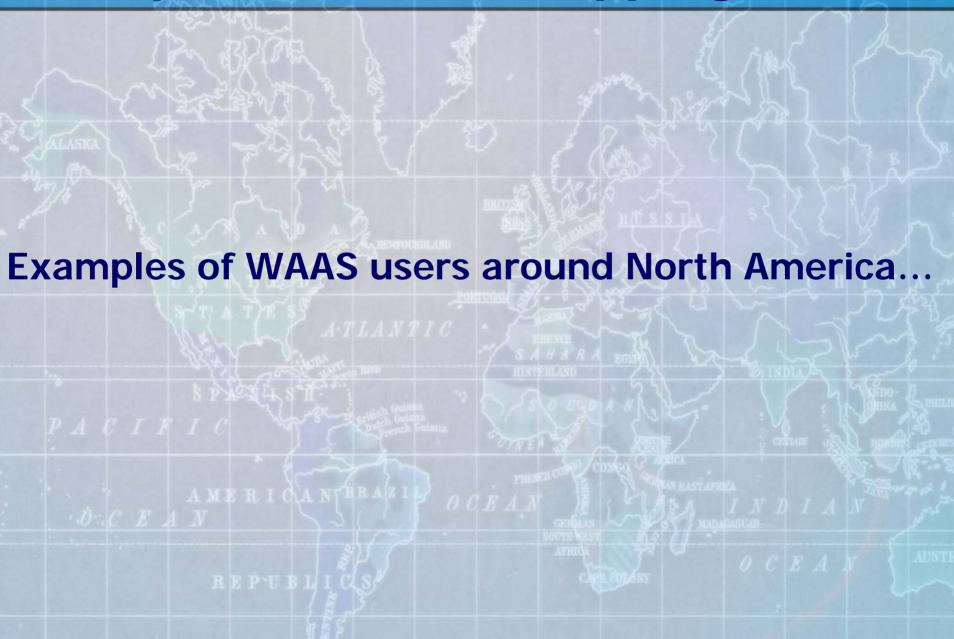
- All WAAS-enabled receivers aren't created equal.
- WAAS was designed for aviation, but GPS receivers can be designed to optimize WAAS for ground users.
- Some manufacturers have introduced high performance GPS L1 mapping receivers that exploit WAAS for ground users.

WAAS


 The position integrity bounds (horizontal and vertical) required by the FAA is 99.9999%.
 Therefore, integrity trumps accuracy.

 If that level of integrity is not required, then integrity can be traded for accuracy.

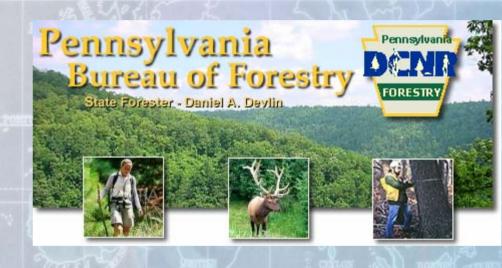
WAAS performance


 "Optimizing WAAS Accuracy/Stability For a Single Frequency Receiver." Kim, Euiho, Walter, T., and Powell, J.D. - Stanford University.

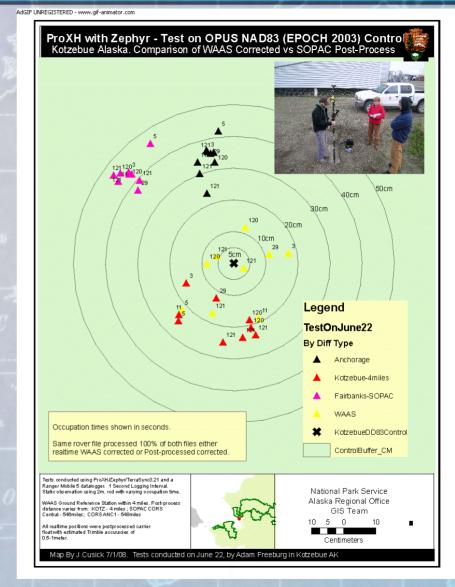
Presented September 2006 at ION 2006.

 Modifying the weighting matrix, adaptive carrier smoothing, and nullifying range rate correction.

Examples of WAAS Mapping users



- J.D. Irving Ltd.
- 15,000 employees
- Industry: Forest Products
- Location: Eastern
 Canada
- Application: Harvesting timber.
- 300+ high performance
 WAAS receivers


"Initially, a number of DGPS options were tested, and WAAS proved to penetrate our forest canopy type the best."

- State of Pennsylvania
- Industry: Forestry
- Location: PA
- Application:
 - Forestry mapping.
- 30 hi-performance
 WAAS receivers.

"We tested against post-processing units in some of the toughest forestry environments we know of. We are extremely pleased with WAAS performance."

- US Nat'l Park Service
- Industry: Gov't
- Location: Sub-Arctic Alaska
- Application: Map archaelogical sites
- 45 high performanceWAAS receivers

"Many mapping grade GPS users still do not feel good about relying on WAAS. You can always post-process, but after reading these numbers, some may ask why bother?"

American Forest Mgt

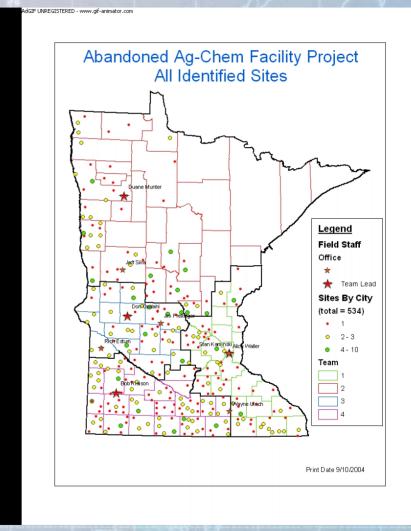
250 employees

Industry: Forestry

- Location: VA to TX,
 ME to MI.
- Application: Area calcs, road work, land owner mapping.
- 25 hi-performance
 WAAS receivers.

"Our field efficiency has drastically increased due to reliable reception and ease of use...office productivity also increased because of real-time correction."

- Portland General Electric
- 2,600 employees
- Industry: Utility
- Location: Oregon
- Application: Utility pole mapping
- 15 hi-performance
 WAAS receivers.


Utility Asset Management

"Four years ago, we started out using low-end WAAS receivers, but switched to mapping-grade WAAS receivers after 60 days due to accuracy problems. 225,000 poles and four years later, we are still using the same WAAS receivers."

State of Minnesota

- Industry: Gov't
- Location: Minnesota
- Application: Mapping abandoned chem bldgs
- 5 hi-performance
 WAAS receivers.

Approximately 500 facilities were mapped using a bluetooth, submeter WAAS GPS and a windows mobile data collector. Wireless technology eliminated connectivity problems and the receivers had Coast technology, consistently giving us submeter, real-time results, even in areas that had poor visibility.

US Forest Service

- Industry: Forestry
- Location: N. Mexico
- Application: Forestry mapping.
- 5 hi-performance
 WAAS receivers.

"Signal reliability is probably 95%. Great reception along a forest road. A differentially-corrected file with no post-processing. That is a HUGE timesaver."

Watch the manufactures

 Both mapping and survey GPS receivers have been introduced that exploit WAAS and the WAAS GEO observables.

Take away messages

 WAAS, when exploited for ground users, is an effective source of GPS corrections throughout North America, Europe and Japan. India and Russia are in planning.

Take away messages

- WAAS, when exploited for ground users, is an effective source of GPS corrections throughout North America, Europe and Japan. India and Russia are in planning.
- The survey/mapping user community clearly prefers a low overhead solution such as WAAS that requires no additional receiver and antenna hardware.

Take away messages

- WAAS, when exploited for ground users, is an effective source of GPS corrections throughout North America, Europe and Japan. India and Russia are in planning.
- The survey/mapping user community clearly prefers a low overhead solution such as WAAS that requires no additional receiver and antenna hardware.
- WAAS, when exploited for ground users, meets the sub-meter accuracy requirements expected of today's high performance mapping systems.

QUESTIONS?

Eric Gakstatter
Contact Information:

egakstatter@gpsworld.com

Subscribe to Survey & Construction Newsletter at www.gpsworld.com/newsletters

Subscribe to GPS World Magazine at www.gpsworld.com/subscribemag

WAAS performance report

April 2008

75cm

 Ave. horizontal accuracy with 95% confidence throughout North America based on more than 7 million measurements per site over a 3 month period.

Jan-Mar 2008

Table 2-2 PA 95% Horizontal and Vertical Accuracy

Location	Horizontal (HAL=40m) (Meters)	Horizontal (HAL=556m) (Meters)	Vertical (VAL=50m) (Meters)	Percentage in PA mode (%)	SPS Accuracy	
					95% Horizontal (Meters)	95% Vertical (Meters)
Atlantic City	1.193	1.193	1.215	99.99738	*	*
Arcata	0.852	0.852	0.912	99.99603	*	*
Oklahoma City	0.664	0.664	1.009	99.99695	*	*
Albuquerque	0.643	0.643	0.757	99.99712	2.233	4.038
Anchorage	0.505	0.506	0.772	99.96967	*	*
Atlanta	0.717	0.717	0.990	99.99814	2.439	4.552
Barrow	0.608	0.611	1.428	99.98066	*	*
Bethel	0.524	0.524	0.789	99.99728	1.960	4.897
Billings	0.706	0.706	0.857	99.99710	2.277	4.205
Boston	0.718	0.718	0.831	99.99614	2.470	4.253
Chicago	0.735	0.735	0.791	99.99652	*	*
Cleveland	0.719	0.719	0.813	99.99636	2.502	4.334
Cold Bay	0.843	0.845	0.996	99.99654	*	*
Dallas	0.665	0.665	1.107	99.99698	*	*
Denver	0.665	0.665	0.824	99.99712	*	*
Fairbanks	0.465	0.465	0.919	99.99838	1.823	4.893
Gander	0.895	0.897	0.961	99.96394	*	*
Goose Bay	0.662	0.663	1.079	99.96368	*	*
Houston	0.691	0.691	1.224	99.99693	2.256	4.264
Iqaluit	0.733	0.736	1.641	99.96634	344	*
Jacksonville	0.707	0.707	1.234	99.99974	*	*
Juncau	0.580	0.580	0.960	99.99775	*	*
Kansas City	0.734	0.734	0.809	99.99670	2.407	4.414
Kotzebue	0.523	0.524	1.065	99.98108	1.856	4.946
Los Angeles	0.703	0.703	0.993	99.99729	2.218	4.651
Memphis	0.682	0.682	0.889	99.99670	*	*
Merida	0.812	0.812	1.239	99.99672	*	*
Mexico City	0.986	0.985	1.306	99.99700	*	*
Miami	0.764	0.764	1.325	99.99636	2.302	4.558
Minncapolis	0.689	0.689	0.846	99.99670	2.360	4.272
New York	0.743	0.743	0.871	99.99480	*	*
Oakland	0.678	0.678	0.945	99.99753	2.207	4.813
Puerto Vallarta	0.949	0.964	1.810	99.99714	*	*
Salt Lake City	0.659	0.659	0.724	99.99729	2.301	4.296
San Jose Del Cabo	0.910	0.914	1.829	99.99729	3/4	*
Seattle	0.879	0.880	0.801	99.99752	2.342	4.636
Tapachula	1.253	1.272	1.917	98.71394	*	*
Washington DC	0.721	0.721	0.822	99.99355	2.520	4.515
Winnipeg	0.719	0.719	1.070	99.99670	*	*

 ^{*} SPS accuracy not computed for this location.

Report 24