Combination of Inertial Survey Systems and GNSS for Surveying

Milena Anguelova

Milena. Anguelova@imego.com

Imego - Part of Swedish ICT

CGSIC, 27 Oct 2009

Overview

Introduction

- Imego in general
- Imego's inertial sensors, systems and applications

GNSS + INS

- Comparison GNSS / Inertial Navigation Systems (INS)
- GPS Shadow Explorer (2004)
- Performance now and in the future

Imego: a research institute focusing on microsensors, sensor systems and prototype development

Imego's applications in motion tracking

Surveying

Sport

Drill hole measurement

Crash tests

Fireman localization

Rocket navigation

+ Other applications

Imego's IMU-history

IMU = Inertial Measurement Unit

Imego's inertial sensors with MEMS-technology

Gyroscopes

measure angular velocity

- measure linear acceleration

Gyro technologies

Overview

Introduction

- Imego in general
- Imego's inertial sensors, systems and applications

GNSS + INS

- Comparison GNSS / Inertial Navigation Systems (INS)
- GPS Shadow Explorer (2004)
- Performance now and in the future

GNSS compared to INS

Satellite navigation

- Absolute position data
- Limited resolution
- Slow
- Worse at orientation
- Easily disturbed
- Best at X&Y

Inertial navigation

- Drift in integrated terms
- High resolution (rel.)
- Fast (kHz)
- Best at orientation
- Disturbance-free (no external ref)
- Best at Z

- complement eachother well!

GPS Shadow Explorer (2004)

- Demonstrator
- With Lantmäteriet (National Land Survey) and other governmental inst.
- Inertial navigation used during GNSS/RTK shadow intervals
- Light and (relatively) inexpensive

GPS Shadow Explorer (2004)

Two reference courses with a number of measured points 5/10 m apart

- Measuring rod is held at the known-point markers
- Pauses appr. 2 s
- 5/10 s between points
- Known start- and endpoints, inbetween GPSshadow

GPS Shadow Explorer

Navigation software

- Kalman filter
- Pauses identified
- ZUPT zero velocity update
 - recalibration of offset-values of gyros and accelerometers
 - at pauses when measuring rod is held fixed on the ground
- Navigation performed between pauses
- Coordinates of start- and end-points known (GPS)

Results 2004

Short course (appr. 50s, 35 m):

9 cm horisontal accuracy

1 cm vertical accuracy

Results 2004

Long course (appr. 120 s, 100 m):

51 cm horisontal accuracy

13 cm vertical accuracy

Then, Now, Tomorrow

- GPS Shadow Explorer 2004
 - Analog gyroelectronics and 30 deg/h bias-stability
 - 51 / 13 cm (h/v) error after 120 s with known start- and end-points
- Present generation's digital IMU (2009)
 - IBG20/21 gyros with appr. 1-3 deg/h bias-stability
 - 5 / 2 cm (h/v) error after 100 s without known end-point
- Next generation gyros (under development)
 - Goal: appr. 10 times better performance
- Tight integration between INS and GNSS
 - INS used to support GNSS's phase tracking

Personal navigation – fireman localization

Personal navigation (INS only) - stairs

Due to zero-velocity updates, drift is minimized

