

Real-time Change detection using Laser Scanning and GNSS Real-time Networks

Michael J. Olsen

Project Team Members

- Principal Investigator
 - Michael Olsen(CE)
- Graduate Students
 - Shawn Butcher (CE)
 - Evon Silvia (CE)
 - Keith Williams (CE)
 - Tony Rikli (CE)
 - Abby Chin (CE)

- Undergraduate Students
 - Cierra Eby (CE)
 - Amanda Olson (CE)
 - Nick Atanasov (CE)
 - Alfred Flammang (CS)
 - Andrew Johnson (CS)
 - Rebecca Pankow (CS)
 - Kris Puderbaugh (NMC)
- Technical Advisory Committee
 - Matthew Mabey (ODOT Research Coordinator)
 - Ron Singh (ODOT Geometronics)
 - Curran Mohney (ODOT)
 - Jonathan Allan (DOGAMI)
 - Alan Blair (FHWA)

Geomatics at OSU

- Growing graduate program (3MS, 1 MENG, 4 PhD)
- Recent strategic partnership with Leica Geosystems and David Evans and Associates
- Students in UG program eligible to sit for FS and FE exams.
- GPS is used in just about every geomatics course!

New Courses
 Digital Terrain Modeling
 3D laser scanning
 BIM

Oregon State

Research Overview

- Change detection is a topic of intense interest in many fields
- Current workflows for TLS require postprocessing

Research Objectives

- 1. Obtain time-series data from multiple sites
- 2. Develop an in field change detection algorithm
- 3. Increase understanding of geologic processes
- 4. Improve efficiency and quality of 3D surveying
- 5. Improve ODOT's allocation of resources
- 6. Expand ODOT capacity for 3D technologies

Anticipated Usage

- 1. Rapid feedback for remediation and mitigation measures effectiveness.
- 2. Better prediction of infrastructure impact zones by improving the means to detect landslide movement prior to failure.
- 3. Greatly increase spatial information available to policy makers.

Terrestrial Laser Scanner Components

Field Setup Mobile

Traditional Methodology

- 1. Laser scan and control data (GPS, total station, etc.) are collected in the field
- 2. Data processing is performed in the office
 - Time intensive process (hours, days, weeks)
 - Labor and equipment intensive
 - Must process all data collected
- 3. Analysis of the data is performed in the office
 - Analyses delayed until after data are processed
 - Delays discovery and usefulness of "interest" areas

New Methodology

- 1. Laser scan and GPS data are collected in the field
- 2. Data processing is split between office and field
 - Introduce automation of some features
 - Geo-referencing (GPS, inclination, digital compass)
 - Visual quality control of new scans (e.g. GPS & alignments)
- 3. Change analysis possible immediately in the field
 - Surface comparison for change detection
 - Evaluate coarse scan and rapid GPS -> re-scan specific areas as needed
- 4. More efficient use of data for post-processing
 - Collect detailed, higher resolution scans where needed
 - Reduces redundant data collection
 - Data already geo-referenced

Lichen (LiDAR Change Engine)

Lichen Workflow

V1.0 8.24.11

Lichen - Features

- 1. Simple Intuitive GUI
- 2. Fast Less than a minute for file conversion, geo-referencing, and change analysis of a scan
- 3. Portable Implementable from a netbook
- 4. Flexible May be used with GPS or control points (monitoring projects)
- 5. Modular Setup so that a controller can be integrated from any manufacturer (pending manufacturer SDK availability)
- 6. Small and lightweight (<30MB for all components)

Lichen v1.0

Drive VZ400 GUI and Output


```
logfile.txt - Notepad
File Edit Format View Help
i Connected to tcp://s9997386:20002
< RIEGLLMS;VZ-400;S9997386;
i Instrument: RIEGLLMS;VZ-400;S9997386;
  Execute MEAS_ABORT()
  MEAS_ABORT()
*MEAS_ABORT()
  <C.P1
  Execute MEAS_BUSY(1)
 MEAS_BUSY(1)
*MEAS_BUSY(1)=0
 Get property INST_IDENT
INST_IDENT
   *INST_IDENT="VZ-400"
 C,Pl
Set property STOR_MEDIA="AUTO USB/INT"
STOR_MEDIA="AUTO USB/INT"
*STOR_MEDIA="AUTO USB/INT"
 EXECUTE MEAS_SET_PROG("HIGH SPEED")
MEAS_SET_PROG("HIGH SPEED")
*MEAS_SET_PROG("HIGH SPEED")
   <C.P1
  Execute SCN_SET_RECT_FOV(30, 130, 0.199, 0, 360, 10) SCN_SET_RECT_FOV(30, 130, 0.199, 0, 360, 10)
     meas_prog = 1
input_changed = 1
       th_socs_start = 30.000000
th_socs_stop = 130.000000
th_socs_incr = 0.098750
       ph_socs_start = 0.000000
ph_socs_stop = 360.000000
ph_socs_incr = 0.499443
       num_scans = 1
range = 100.000000
     range = 100.00000
line.angle.start = 172527, 940526, 1708527
line.angle.stop = 492645, 1260645, 2028645
line.angle.incr = 316
frame.angle.stop = 2758634
frame.angle.stop = 2758634
frame.angle.incr = 1918
line_mode = AUTO
frame.mode = AUTO
scan_duration = 5.993316
num.meas.per_line = 1012
num.lines = 720
num.meas = 728640
line.spode = 14416.059570
       line_speed = 14416.059570
lines_per_sec = 120.133827
frame_speed = 60.000000
   *SCN_SET_RECT_FOV(30,130,0.199,0,360,10)=30.000,130.000,0.099,0.000,360.000,0.499,5.993,728640,1,0
```


6 DOF

- GPS coordinate (from ORGN) at each scan location (trans X,Y,Z)
- Dual Axis Tilt/Level
 Compensator (rotation X,Y)
- Digital compass reading or back-sight (~ rotation Z)
- Software alignment to correct for backsight error (rotation Z)

Oregon State

Correct GPS data for unlevel setup

$$\begin{pmatrix} \Delta X \\ \Delta Y \\ \Delta Z \end{pmatrix} = R \begin{pmatrix} 0 \\ 0 \\ -(H+h) \end{pmatrix}$$

$$R(\alpha, \beta, \gamma) = \begin{bmatrix} \cos \beta \cos \gamma & \cos \alpha \sin \gamma + \sin \alpha \sin \beta \cos \gamma & \sin \alpha \sin \gamma - \cos \alpha \sin \beta \cos \gamma \\ -\cos \beta \sin \gamma & \cos \alpha \cos \gamma - \sin \alpha \sin \beta \sin \gamma & \sin \alpha \cos \gamma + \cos \alpha \sin \beta \sin \gamma \\ \sin \beta & -\sin \alpha \cos \beta & \cos \alpha \cos \beta \end{bmatrix}$$

H = antenna height to ARP h = phase offset

Least squares solution

Formulation:

$$\begin{cases} v_{x1} & v_{y1} \\ v_{x2} & v_{y2} \\ \vdots \\ v_{xn} & v_{yn} \end{cases} = \begin{cases} x_{B1} - X_{B0} & y_{B1} - Y_{B0} \\ x_{B2} - X_{B0} & y_{B2} - Y_{B0} \\ \vdots \\ x_{Bn} - X_{B0} & y_{Bn} - Y_{B0} \end{cases} \begin{bmatrix} \cos \alpha_B & \sin \alpha_B \\ -\sin \alpha_B & \cos \alpha_B \end{bmatrix} + \begin{cases} X_{B0} & Y_{B0} \\ X_{B0} & Y_{B0} \\ \vdots \\ X_{B0} & Y_{B0} \end{cases} - \begin{cases} x_{A1} & y_{A1} \\ x_{A2} & y_{A2} \\ \vdots \\ x_{An} & y_{An} \end{cases}$$

Sum of the squares of the errors:

$$V_{SS}^2 = v_{x1}^2 + v_{y1}^2 + v_{x2}^2 + v_{y2}^2 + \dots + v_{xn}^2 + v_{yn}^2$$

Minimizing the sum of the squares of the errors:

$$\frac{\partial V_{SS}^2}{\partial \propto_B} = \frac{\partial v_{x1}^2}{\partial \propto_B} + \frac{\partial v_{y1}^2}{\partial \propto_B} + \frac{\partial v_{x2}^2}{\partial \propto_B} + \frac{\partial v_{y2}^2}{\partial \propto_B} + \dots + \frac{\partial v_{xn}^2}{\partial \propto_B} + \frac{\partial v_{yn}^2}{\partial \propto_B} = 0$$

Solution:

$$\begin{split} \alpha_{B} &= -\tan^{-1}\left(\frac{\overline{\Delta y}}{\overline{\Delta x}}\right) = -atan2(\overline{\Delta x}, \overline{\Delta y}) \\ \overline{\Delta y} &= \sum_{i=1}^{n} x_{Ai} y_{Bi} - \sum_{i=1}^{n} y_{Ai} x_{Bi} + y_{BO}(\sum_{i=1}^{n} x_{Bi} - \sum_{i=1}^{n} x_{Ai}) + x_{BO}(\sum_{i=1}^{n} y_{Ai} - \sum_{i=1}^{n} y_{Bi}) \\ \overline{\Delta x} &= \sum_{i=1}^{n} x_{Ai} x_{Bi} + \sum_{i=1}^{n} y_{Ai} y_{Bi} - y_{BO}(\sum_{i=1}^{n} y_{Ai} + \sum_{i=1}^{n} y_{Bi}) \\ -x_{BO}(\sum_{i=1}^{n} x_{Ai} + \sum_{i=1}^{n} x_{Bi}) + n(y_{BO}^{2} + x_{BO}^{2}) \end{split}$$

Aligned by *PointReg*

Unconstrained Software Alignment

Change Detection Algorithm

- 1. Create hash table for baseline cloud (on load)
 - -> assign points to cube grid based on XYZ location
- 2. Import subset of new scan
- 3. Find distance to closest points from new scan to base scan
 - i. Search in cube
 - ii. If not found, search next cube
- 4. Color code based on distance (min, max thresholds)
- 5. Display colored results to user

Research Sites

- 1. Geomatics Lab (OSU)
- 2. Geotechnical testing Berm (OSU)
- 3. Beverly Beach/Johnson Creek Landslide
- 4. Pioneer Mountain Eddyville (US-20)
- 5. MSE Wall

Research Sites - Pile Testing Berm (OSU)

Pile Testing Berm - Monitoring Test

High resolution (0.030 degree) baseline scan taken the day of testing. For monitoring projects, post-processing may be skipped (not optimal). Total pile displacement was 10 inches.

Pile Testing Berm - Monitoring Test

Pile Testing Berm – Monitoring Test

Research Sites - Beverly Beach/Johnson Creek Landslide

Point Cloud to 3D mesh for a section of Beverly Beach

Research Sites – Johnson Creek Landslide

Examples of point clouds and their respective 3D triangulated meshes.

Site Test - Johnson Creek Landslide

Geo-referencing and aligning a new scan to the baseline model in *Lichen*.

Site Test - Johnson Creek Landslide

Change detection in the field of the new scan (August 2011 compared to baseline model (December 2010).

Research Sites - Johnson Creek Landslide

Change analysis between LiDAR surveys showing advance and retreat of the cliff face at the North Section (Northing 4,954,580 m to 4,954,650m).

Conclusions

- 1. Developed software that provides immediate, visual results to field crews and researchers.
- 2. Enabled real-time change detection for TLS systems
 - a) Non-fixed position (e.g. GPS)
 - b) Fixed position monitoring (e.g. control points)
- 3. Improved field data collection
 - a) Reduced redundant data collection & processing
 - b) Minimal impact to field times implementing methodology
- 4. Provided users with in-field quality control over new data

Importance of GPS real-time network technology

- 1. Need fast, accurate positioning information
- 2. Each overview scan is approximately 2 minutes
- 3. Sites can change substantially (e.g. Johnson Creek landslide) so survey control is unstable
- 4. Limited low-tide window on coast
- 5. Helps keep each survey independent
- 6. Limited field crew, resources, and survey control

Foreseeable Applications

- 1. Landslide hazard analysis
- 2. Coastal region monitoring projects
- 3. On-site monitoring of construction progress
- 4. Quality Control
 - a) As-built
 - b) 3D design to manufactured comparison
- 5. Disaster & Hazard Monitoring
 - a) Collapsed buildings/Rescue scenarios
 - b) Remediation & cleanup

Current and Next Steps

- 1. Report Feedback & Modification
- 2. Improve *Lichen*
 - a) Modify monitor file sizes
 - b) Direct link to GPS data
 - c) Improve customization options
 - d) Increase functionality of distance & color scaling
 - e) Compare additional change algorithms\evaluation. Potentially include open source versions
- 3. Incorporate user feedback & requests where possible
- 4. Disseminate findings and software

Special Thanks

